Disaster risk reduction and Flood Early warning Systems

DSTE - Second Webinar of Climate Change Webinar Series

Date 08-09-2020

Prasoon Singh
Associate Fellow
The Energy and Resources Institute
Prasoon.Singh@teri.res.in

Disaster

Disaster, as defined by the United Nations, is a "serious disruption of the functioning of a community or society, which involve widespread human, material, economic or environmental impacts that exceed the ability of the affected community or society to cope using its own resources"

- DISASTERS OCCUR WHEN A Community's risk mitigation measures fails
- Disasters are the consequence of inappropriately managed risk.
- Serious disruption, occurring over a relatively short time
- Consequences: Loss of life, economy and environment

Total number of Natural Disasters

Source: EM-DAT: The Emergency Events Database - Université catholique de Louvain (UCL) - CRED, D. Guha-Sapir - www.emdat.be, Brussels, Belgium

90 % of events, 70 % of causalities and 75 % of economic losses are related to hydro-meteorological hazards

Climatology

Projected Change in Climate over India

- A warmer India: on avg. 27 more hot days (>45°) each year and around 1.3 more consecutive hot days (heat waves) events each year for next 30 years.
- **Higher Annual rainfall with more heavy rainfall days**: minus 10% to 30% with around 4 18 more days of very high rainfall in near future.
- More Dry Days: Rainfall is projected to concentrate over lesser number of days.
- Increased Lightnings are expected
- Regional sea level changes have been estimated at close to 2.0 mm/yr over
 North Indian Ocean and 4 mm/yr over the Bay of Bengal region.
 - Tide gauge trends: All coastal cities shows increasing historical trends with Kolkata showing the maximum.
- 15-20% increase in storm surges with 100 year return levels projected for East coast.
- Intensity of cyclones have seen an increase historically as well as projected to increase in future.
- Rapid Warming of Arabian Sea: high SSTs are showing itself wrt to higher cyclonic activity over this region.

THE STATE OF THE WORLD: UNPREPARED

- 200 nations and 7 billion people are investing over 6 trillion dollars each year in urban development and billions in education.
- Each year, approximately 700-900 events cause economic losses in Billions with large tolls in mortality and morbidity
- Traditionally our response to the disaster have been limited to post disaster recovery and relief
- Paradigm shift from Post disaster response to Preparedness and prevention through risk assessment and risk reduction
- Technology driven Decision Support System for DRM

Flood Early warning system

Flood Early warning system

- Early warning systems are an important component of disaster risk management strategies.
- The main purpose of early warning systems is to issue warnings when a flood is imminent or already occurring.
- Early warning systems for floods comprise four inter-related elements:
 - 1. Assessments and knowledge of flood risks in the area,
 - 2. Hazard monitoring (forecasts) and warning service,
 - 3. Flood risk dissemination and communication service, and
 - 4. Community response capabilities

Early warning system

Advancements in hydro-meteorological forecasting and climate modelling

Seasonal to Short to medium Decadal Climate term weather inter-annual climate trend change forecasts climate forecasts analysis scenarios Next hour to Long term Decade Season to year climate change 10 days ✓ International √ Medium-term ✓ Long-term √ Short-term planning operational strategic planning negotiations with Emergency √ Infrastructures Preparedness national policy planning √ Risk assessment implications planning, retrofitting and management √ Land zoning **Decision-making Timelines**

System Architecture

Flood Map

Modelling Software

Hydrological and Hydrodynamic Model

- MIKE 21
- MIKE Hydro river
- MIKE Flood
- SWMM
- HecRAS
- HecHMS

Weather Forecast

- WRF
- GFS
- Satellite
- Real time AWS/ARG

MIS and Web

- Server
- Automation
- WebSQL
- WebGIS

Model input data Requirement

Topography • DEM, Contour, UAV, Survey **River Cross section** • River Profile survey Discharge • River Discharge observation, water lavel Rainfall • Station observation, Gridded, and forecast Surface and soil properties • LULC and soil data Structures Hydrological structure • Storm water drain Meteorological Information • Temp, ET

Thank You!