"Renewable Energy for Climate Change Mitigation"

Workshop on Integrating Climate Action in the Development Planning of Puducherry Union Territory

Organized by:

The Energy and Resources institute (TERI)

New Delhi

Shirish S Garud, Senior Fellow and Director TERI

Flow of the presentation

- Energy and its impacts
- Renewables: Introduction
- Puducherry Power system
- Possible RE interventions
- Progress so far
- Way forward

Impacts of uncontrolled and rapid development

Degradation of natural resources

Air and water pollution

Global Climate Change

Unsustainable waste generation

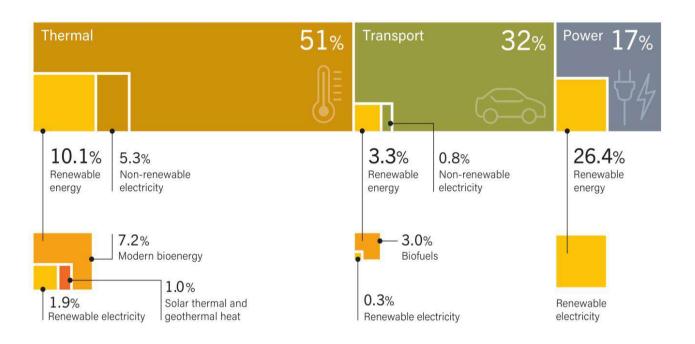
Resources depletion

Threat to human civilization

SECURITY

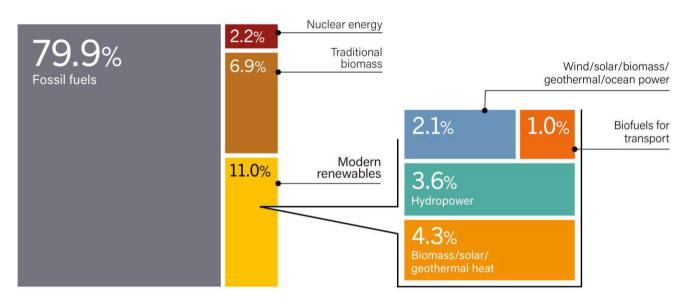
Sustainability centric development approach

- Quality of life
 - Physical needs
 - Emotional
 - Spiritual
 - Intelligence



Energy demand global scenario

More than 80% of the energy is consumed in heating, cooling and transport

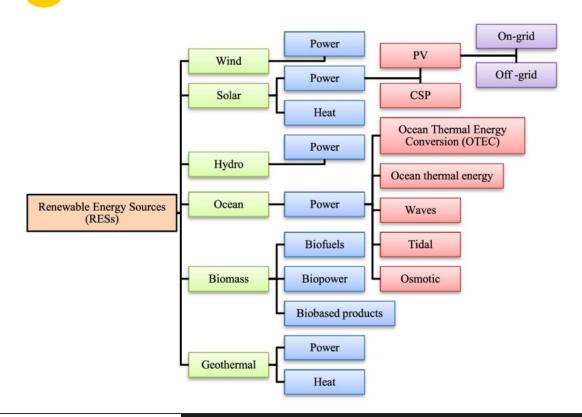


RE share in Energy Demand

Note: Data should not be compared with previous years because of revisions due to improved or adjusted data or methodology. Totals may not add up due to rounding.

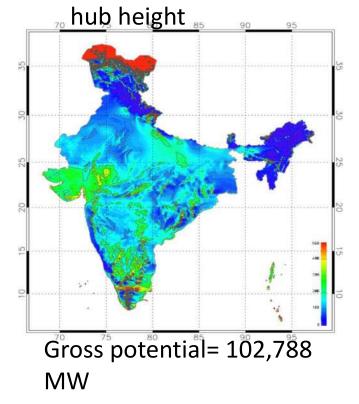
Source: Based on IEA data.

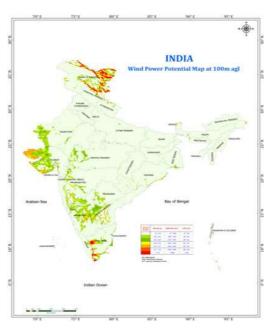
REN21 RENEWABLES 2020 GLOBAL STATUS REPORT



Renewable Energy Technologies

Solar Technologies





Wind energy basics

Wind energy potential at 80 m

Wind energy potential at 100 m hub height

Gross potential- 302,251 MW

- Wind power density min 200 W/m²
- Wind speed:
 - o Min 2- 5 m/s

Source: http://inwea.org/wind-energy-in-india/wind-power-potential/

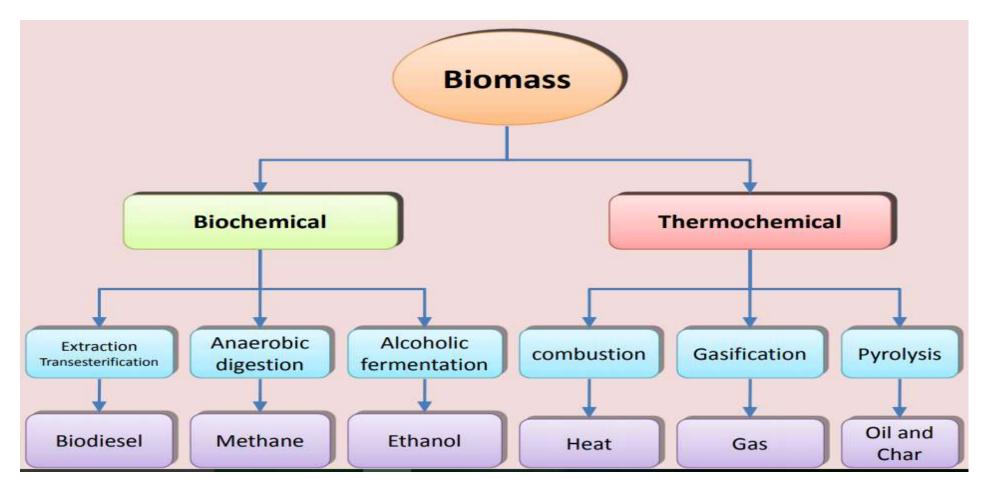
Turbine technologies

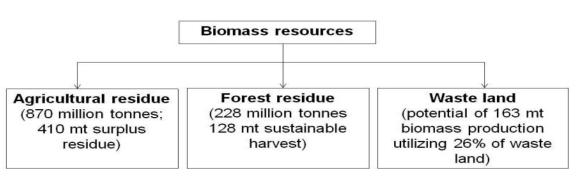
- India
 - India has 8 manufacturers
 - Manufacturing capacity 9.5 GW per year
 - 250 kW to 2.1 MW capacity turbines
- Global
 - Maximum capacity 9.5 MW turbine
 - Offshore wind industry is expanding

Suzlon 88-100 turbine Rated power 2.1 MW Rotor diameter 88 m Cut-in wind speed – 4m/s Rated wind speed 14m/s Swept area 6,082 m² Rotational speed 15 rpm Hub height – 80m

Wind industry

- 13 turbine manufacturing companies
- 35 wind turbine models from 250kW to 2750 kW capacity
- EPC, developers and servicing companies



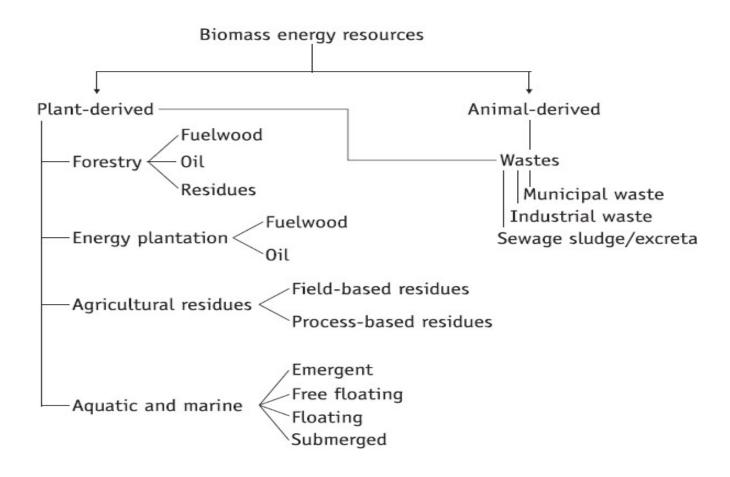

Biomass Energy recovery routes

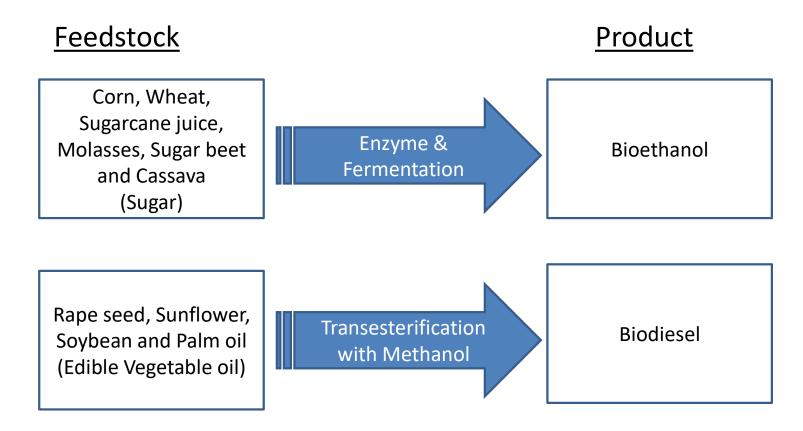
Biomass Energy in India

- Biomass energy an important renewable energy resource for India
- 150 million tonnes per annum of surplus biomass is generated from different sources
- Many unutilized biomass residues such as pine needles, lantana etc. are also available.
- Gasification technology a viable alternative for efficient utilisation of surplus biomass
- Biomass energy is fast emerging as a potential for meeting India's energy security and for its lowcarbon development path

Biomass types

Virgin	Terrestrial biomass	Forest biomass Grasses Energy crops Cultivated crops	
	Aquatic biomass	Algae Water plant	
Waste	Municipal waste	Municipal solid waste Biosolids, sewage Landfill gas	
	Agricultural solid waste	Livestock and manures Agricultural crop residue	
	Forestry residues	Bark, leaves, floor residues	
	Industrial wastes	Demolition wood, sawdust Waste oil or fat	





Classification of biomass resources on the basis of their origin

First Generation Biofuels

Biofuels produced using edible crops and vegetable oils.

Second Generation Biofuel

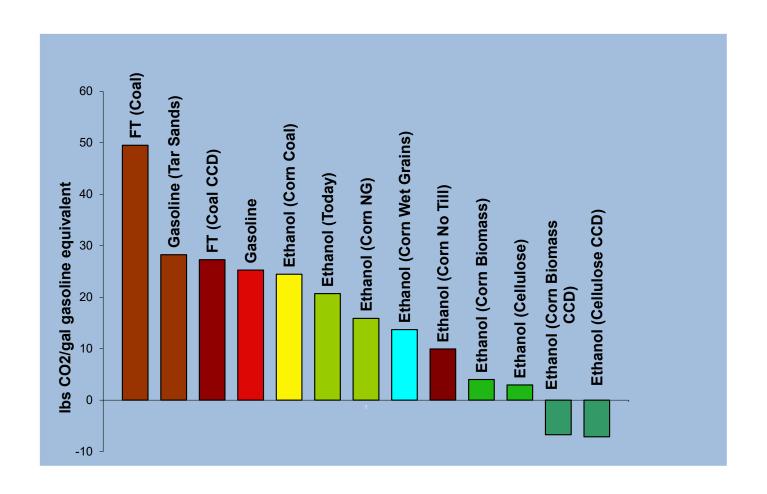
Food vs. Fuel

 Large-scale production of crop based (first generation) biofuels may not be feasible without adversely affecting global food supply or encroaching on other important land uses.

 Biofuels from non crop, non edible feedstock with limited use of land without affecting food supply leads to second generation Biofuels (Bioethanol & Biodiesel). It would be possible to produce a large portion of transportation fuels using advanced biofuel technologies.

Third Generation Biofuels

Production of sustainable Biofuel (Biodiesel) from algae and aquatic biomasses.


Algal Biofuel Process Systems

- Open Pond System
- Hybrid System,
- Modular Closed Photobioreactor,
- Heterotrophic Fermentation,
- Integrated Cultivated System.

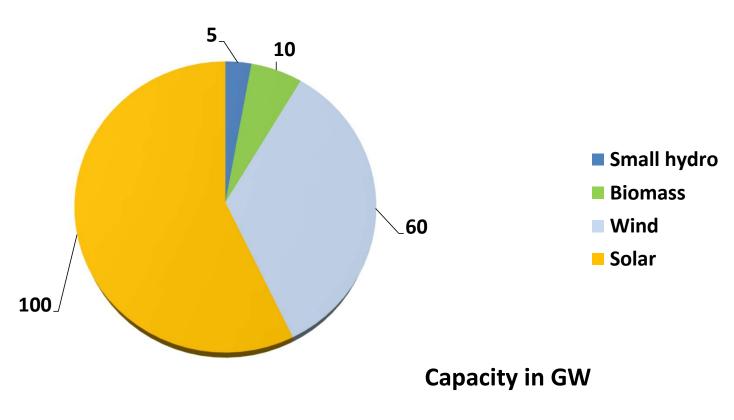
Fourth Generation Biofuels

- Production of sustainable biofuels from specially created plants or biomass with greater yields and easier cellulosic breakdown.
- Additionally, they can be developed on land and water bodies that are unfit for agriculture.
- It would be co-processed using hydro processing facility in petroleum refining industry.
- It should possess greater environmental benefits, be cost competitive, and producible in sufficient amounts as Drop-In fuel to have a meaningful impact on fuel demands.
- Most importantly, the net energy derived from the feedstock should exceed the amount that is required for production.

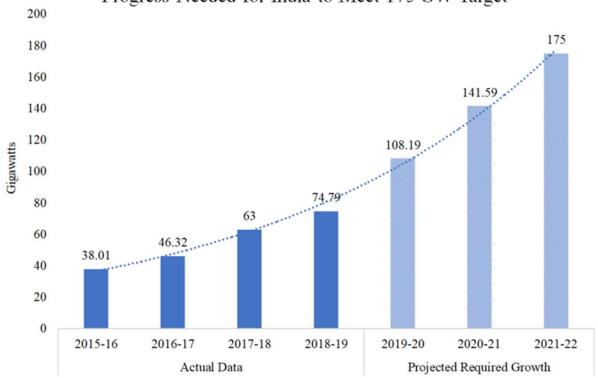
CO₂ Emission from Alternate Fuels

Wave and Tidal Energy Potential (MW) of India

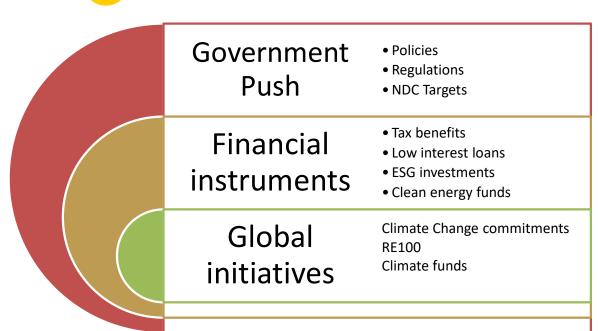
State	Tidal power potential	Wave power potential
Gujarat	10,425	4100
West Bengal	900	na
Odisha	400	600
Tamil Nadu	230	10,600
Maharashtra	200	8100
Andha Pradesh	100	6900
Karnataka	100	6100
Kerala	100	4900
Total	12,455	41,300

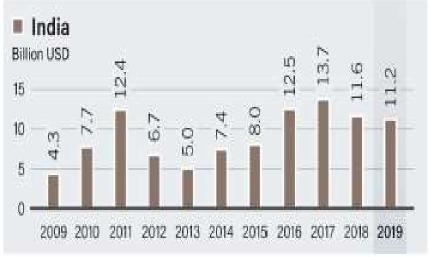



Renewable Power Target -175 GW by 2022



Growth of Renewables

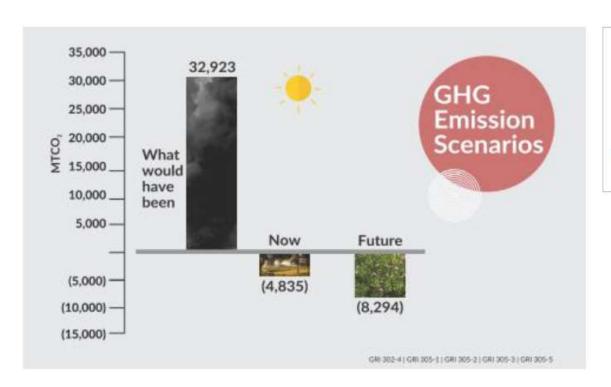



India: 8 levers are identified in the INDC, of which 6 are also quantified

Reduction levers			cluded in INDC?	Specification	
Energy	Non-fossil	• Wind		Wind: 60 GW by 2022	
		• Solar	■ 100 GW by 2022		
			Biomass: 10 GW by 2022		
		Other	V	 Nuclear: 63 GW by 2032 	
	Energy efficiency	Buildings	\checkmark	E.g. Energy Conservation Building Code	
		Industry	√	E.g. Perform, Achieve and Trade scheme	
		Transport	\checkmark	E.g. Vehicle fuel efficiency standard	
	Fuel shifts	Coal to gas	×	 Not mentioned in the INDC 	
		Transport (NG/ biofuels)	\checkmark	20% blending of biofuels	
Non energy		Specification	×	Not mentioned in the INDC	
Other	Non-core energy	Methane	×	 Non-CO2 emissions are not mentioned specifically in the INDC. 	
		 Nitrogen oxide 	*	However, various measures related to reducing emissions from waste are included.	
		Other	*	Tradio dio inclosod.	
	LULUCF1	Afforestation	√	 Additional (cumulative) carbon sink of 2.5 to 3 billion tonnes of 	
		 Reforestation 	*	${\rm CO_2}$ equivalent through additional forest and tree cover by 2030.	

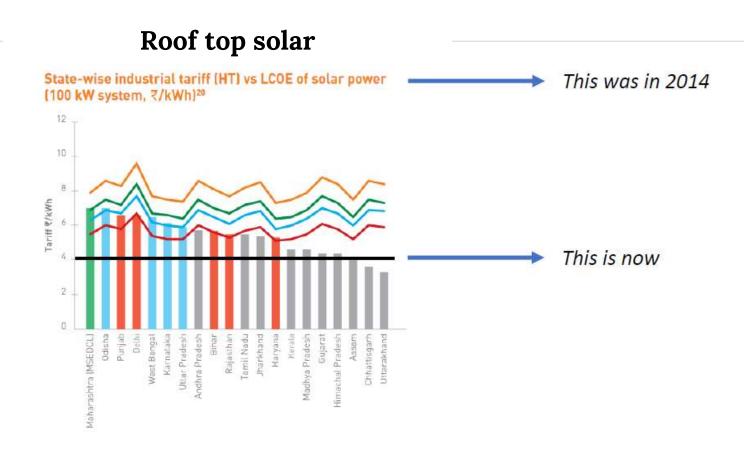
¹ LULUCF: Land Use, Land Use Change and Forestry

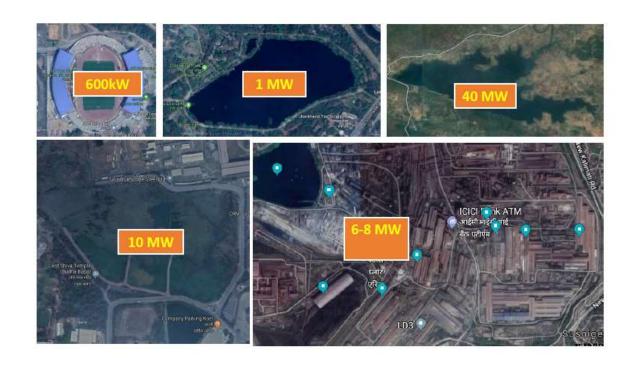
Drivers for Energy Transition



Creating Impact- Magarpatta City

The 2018-19 Sustainability
report of Magarpatta City,
Pune was awarded as "Asia's
Best First Time Sustainability
Report" by Asia Sustainability
Reporting Awards





RE potential assessment for Industry

TERI's TEAM technology for kitchen waste to bio gas

- It uses kitchen/ garden waste
- Available from 50kg/ day to 2 ton /day
- Odourless / compact
- Gas can be used back for cooking / common facilities

Solar Powered Loom

Under the CSR initiative of Indus Towers, installation of 102 hybrid units (solar + grid) to supply power to 408 power looms, in and around Varanasi, is underway

• Capacity of each Solar PV Unit: 2 KWp

• Lithium Battery capacity: 6 KWh

• Power Conditioning Unit: 5 KVA

• Electrical Motor: 0.5 hp (230V, 50 Hz)

• No. of connected Looms with each unit: 4

Battery Powered Boat

Under the CSR initiative of Indus Towers, Installation of 4 Solar Charging Stations for running 40 Battery Operated Boats at Varanasi is underway.

• Capacity of each Charging Station: 5 KWp

• Lithium Battery used for each boat : 2.2 KWh

• Propeller:

✓ Hydrodynamic Weed less Wedge Propeller

✓ Max Load Thrust : 100 lbs

✓ Weight: 28 lbs

✓ Input Power: 48 V DC

• Passengers: 10-15 persons per boat

Biomass gasifier based cold storage cum power generation

Biomass Gasifier – Thermal Applications

Silk reeling

Retrofitted with bakery oven

Dyeing oven

Large scale cooking

Rubber drying

A cooking oven

Overview: Hydrogen value chain

Storage and transportation of hydrogen could be a potential challenge for scaling up the hydrogen economy for India.

Existing infrastructure is limited and could be insufficient to support the widespread use of hydrogen as an energy carrier.

Globally, most hydrogen is transported using pipelines. However, pipelines need to be designed with higher specifications to minimize leakage and embrittlement.

Alternatively, hydrogen can be transported in the form of ammonia, methanol, and Liquid Organic Hydrogen Carriers (LOHCs). These fuels will have higher energy conversion costs. At lower volumes, transporting hydrogen using trucks could be a viable option

Hydrogen value-chain

Source: CleanH2.org

Potential- Green Hydrogen

S.no	Source	Gross Potential (a)	Installed Capacity (b)	Under Construction (c)	Under Planning (d)	Resource requirement for 2022 target (e)	Resource requirement for 2030 target (f)	Resource available for Green Hydrogen Production (g)= (a)-{(b)+(c)+(d)+(e)+(f)}	CUF
1	Solar	748	90	14	24	10	200	410	22%
2	Wind*	302	40	12		10	100	140	29%
3	Micro Hydel	21	5	-	-	-	-	16	40%
4	Large hydro	148	47	13	11	-	25	52	45%
5	Tidal	12	-	-	-	-	-	12	10%
6	Geothermal	10	-	-	-	-	-	10	71%
7	Offshore wind	71	-	-	-	-	-	71	30%
8	Biomass	42	10	-	-	-	-	32	40%
-	Total (GW)	1354	192	39	35	20	325	743	

743 GW of non fossil potential would be available for green hydrogen production

Potential - Green Hydrogen

Source	Net potential	CUF	Net available capacity (GWhr)	HHV of Hydrogen (GWhr)*	Hydrogen potential (MT per annum) (e) = (d x 10^6 /39.39/1000/10^6)	
	(a)	(b)	(c) = $(a \times b \times 8760 \text{ hrs.})$	(d) = (c x electrolyser efficiency)		
Solar	451	22.00%	869167.2	564959	14	
Wind	140	29.00%	355656	231176	6	
Micro Hydel	Micro Hydel 16 40.00% 56064		56064	36442	1	
Large hydro	52	45.00%	204984	133240	3	
Tidal	12	10.00%	10512	6833	0.5	
Geothermal	Geothermal 10 71.00% 62196		62196	40427	0.5	
Offshore wind 71 30.00%		186588	121282	3		
Biomass	32	40.00%	112128	72883	2	
	Total		1857295.2	1207242	30	

Assuming that the net potential of RE is the power available to a hypothetical commercial-grade electrolyzer, and its efficiency is 65% (as per existing commercially available electrolyzers) the total potential of Hydrogen in India works out to ~ 30 MT per annum.

*HHV of Hydrogen is 39.39 kWh/kg Source: TERI Analysis

National Hydrogen Mission

- The Government of India has allotted Rs 25 crore in the Union Budget 2021–22 for R&D in hydrogen energy and intends to produce three-fourths of its hydrogen from renewable resources by 2050.
- In July 2021, The Minister for Power, announced the introduction of **Green Hydrogen Consumption Obligation** (similar to Renewable Purchase Obligations) in fertilizer production and petroleum refining. A green hydrogen bid in the next four-five months is also expected.
- India also plans to call **bids for 4 GW electrolyzer capacity**. The government could also extend the production-linked incentive (PLI) scheme for manufacturing electrolyzers to produce green hydrogen.
- TERI analysis indicates that H₂ demand could increase to 28 Mt by 2050, driven by demand from industrial sectors. Expanding in existing sectors - fertilizer and refineries, or growing into new sectors, such as steel.
- Estimates suggest that, demand for hydrogen in the transport sector will see growth mainly in the heavy-duty and long-distance segments. H₂ could also play a role in the power sector as a long-term storage vector.

Hydrogen demand could at least multiple 3 fold by 2050, likely to be driven by industry

- H2 demand in India today is around 6 Mt, mainly in fertilisers (ammonia) and refineries.
- Steel sector is also expected start consuming hydrogen, replacing coal to process iron ore
- By 2050, this could increase at least 3 fold, largely driven by growth in industry.
- Transport will see some growth, mainly from heavy-duty and long-distance transport.
- There is the potential for some limited use of hydrogen in the power sector.

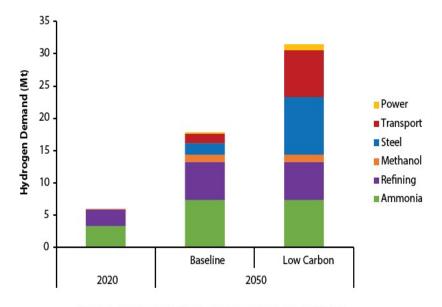


Figure 4: Baseline and Low Carbon scenarios, 2020 and 2050

Source: TERI analysis

Note: Demand projections exclude potential use of hydrogen in shipping, aviation, and petrochemicals, which are not covered in this report.

Some initiatives by Indian industry

IOCL

- Announced development of India's first green H₂ plant at Mathura.
- MoU with Tata Motors -15 H₂powered fuel-cell buses developed
 in collaboration with ISRO.
- Developing Type-3 High Pressure H₂ Cylinder and material-based H₂ storage.
- Green H₂ from biomass

Reliance Industries

- Announced investment in four "giga factories" to manufacture photovoltaic modules, batteries, fuel cells and electrolyzers.
- Set out a 1-1-1 target of bringing down the cost of green H₂ to under \$1 per 1 kg in 1 decade.

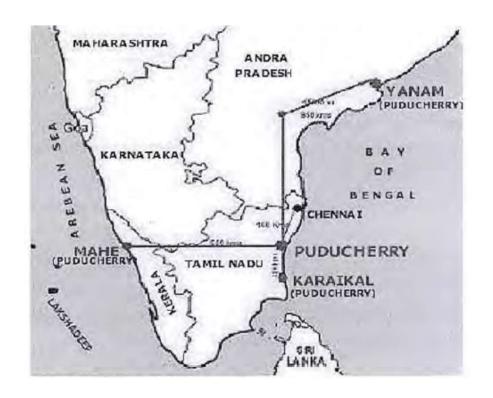
NTPC

- Fuel cell based micro grid in Ladakh.
- Hydrogen storage for renewable power.
- Green methanol plant (H₂ plus carbon capture and utilization).
- Green ammonia production.
- Plans for Green H₂ generation in Gujarat.

Adani Enterprises

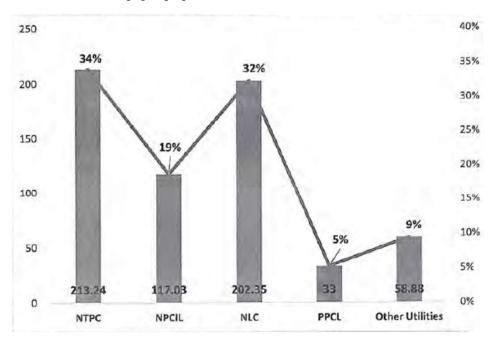
- Announced plans to invest across the entire green energy value chain.
- MoU with Maire Tecnimont to develop projects in producing ammonia, and hydrogen, and from renewable feedstock.

BHEL


- Fuel cell technology development and testing infrastructure.
- Business plan across the value chain (supply/ EPC/ Project design etc.).
- Hydrogen buses

ACME Group

 Set up the world's first integrated commercial-scale pilot plant for Green Hydrogen and Green Ammonia production in Rajasthan in 2021.



Puducherry Power System

Power supply position

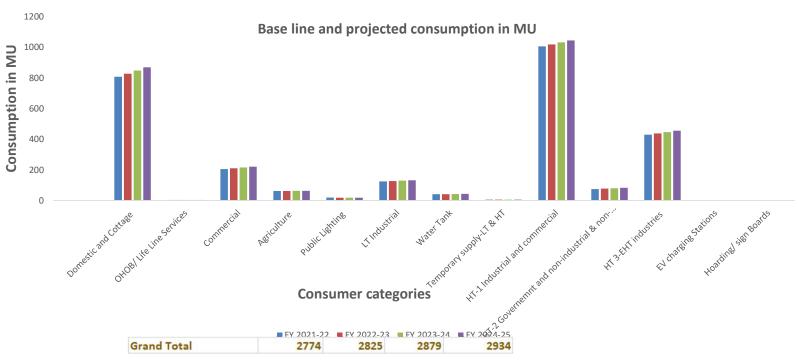
Source: Business plan Petition, Dept of

Electricity, Puducherry

Power Consumption Times Series Data

Davamatava	Year									
Parameters	2014	2015	2016	2017	2018	2019				
Residential	610.38	645.22	685.00	720.22	733.52	721.80				
Industry	1,479.53	1,449.75	1,425.00	1,425.00	1,509.08	1,614.24				
Commercial	181.00	182.22	198.00	198.00	216.41	212.85				
Total	2,270.91	2,277.19	2,308.00	2,343.22	2,459.01	2,548.89				

Sectorial emissions


Installed Capacity of Power Utilities in UT of Puducherry as on 31.10.2021 (Figures in MW)

Ownership/S	Modewise breakup								
			Thermal	Nuclear	Hydro	RES*	Grand Total		
ector	Coal	Lignite	Gas	Diesel	Total	Nuclear	Tiyuto	NLO	iotai
State	0	0	32.50	0	32.50	0	0	0	32.50
Private	0	0	0	0	0	0	0	5.51	5.51
Central	140.80	111.80	0	0	252.60	86.00	0	0	336.50
Total	140.80	111.80	32.50	0	285.10	86.00	0	5.52	382.62
* - Renewable energy systems								v systems	

Annual consumption in UT

Source: Business Plan Petition, Dept of Electricity, UT Puducherry

Scheme	Targets	Impacts on sustainability and SDGs					
Renewable Power	450 GW by 2030	Green job creationGHG emission reduction					
National Solar Mission	100 GW by 2022	 Rural employment Industry development International partnerships (ISA) GHG reductions 					
Wind revolution	60 GW by 2022	 Rural employment Industrial development GHG emission reduction 					
Hydro mission	5 GW by 2022; 80 GW by 2030	Decentralised rural electrification; livelihood generation; improved quality of life					
National Biofuels Policy and SATAT	E20 by 2025; 5000 BCNG plants	 GHG emission reduction; Recycling of agricultural, industrial and municipal waste (250million tonnes per annum) INR 100,000 crore (USD 13.8 billion) Potential reduction in India's annual fuel import bill by using biofuels 					

- Switching to renewables
- Adapting strategies to reduce carbon foot print of supply chain through EE, renewables, circular economy
- Diversification into RE sector
 - Hydrogen economy
 - Energy storage
 - Electrification of industrial activities

C

Potential areas for RE interventions

- Solar PV and thermal
 - Industrial systems
 - Rooftop solar systems
 - Irrigation systems
 - Floating solar systems
- Wind
 - Off shore
- Bioenergy
 - Waste to energy (rural / urban)
 - Biofuels
- Hydrogen
 - Industrial applications

Thank You!

www.teriin.org shirishg@teri.res.in

