Workshop on Integrating Climate Action in the Development Planning of Puducherry Union Territory

ENHANCING CLIMATE RESILIENCE THROUGH INTEGRATED WATER RESOURCE MANAGEMENT

DR.K.SRINIVASAMOORTHY
PONDICHERRY UNIVERSITY

moorthy_ks@yahoo.com

CLIMATE CHANGE IMPACTS ON GROUNDWATER

- Recharge
- Discharge
- Storage
- Quality

- Temperature
- Precipitation
- Evapotranspiration
- Sea level rise
- Soil moisture

ASSESSMENT OF CLIMATE CHANGE OVER THE INDIAN REGION: MINISTRY OF EARTH SCIENCES (MOES, 2020)

Fresh water supply

HOBIES of droughts

Team-BHP.co

· High variability predicted in water yields

(from 50% increase to 40-50% reduction)

• 10-30% increased risk of floods; increased

TEMPERATURE:

- DURING 1901-2008. THE AVERAGE TEMPERATURE OF INDIA HAS RISEN BY 0.7°C.
- TEMPERATURE IN INDIA IS EXPECTED TO RISE BY 4.4°C BY END OF THIS CENTURY DUE TO GREEN HOUSE GASES EMISSION.
- THE RISE WILL INCREASE HEAT WAVES (APRIL AND JUNE) OVER INDIA BY 3-4 TIMES BY THE END OF THIS CENTURY WHICH WILL ALSO INCREASE DROUGHT INTENSITY.

RAINFALL:

- THE INDIAN MONSOON VARIABILITY IS PROJECTED AS 14% BY 2100 AND MAY GO UP BY 22.5%.
- DECLINE IN RAINFALL (UP TO 6%) DURING SUMMER MONSOON BETWEEN 1950 TO 2015, WELL WITNESSED IN INDO-GANGETIC AND WESTERN GHATS REGION.
- FREQUENCY OF DRY SPELLS AND WET SPELLS DURING MONSOON HAS INCREASED BY 27% AND 75% RESULTING IN DROUGHTS.

CHANGES IN THE HIMALAYAN REGION:

- HINDU KUSH HIMALAYAS HAVE WITNESSED RISE IN TEMPERATURE (1.3°C) RESULTING IN SNOWFALL DECLINE.
- FURTHER DECLINE IN SNOW FALL IS ALSO WITNESSED.
- TEMPERATURE IS PROJECTED TO RISE BY 5.2°C.

SEA LEVEL RISE:

- INDIAN OCEAN HAVE EXPERIENCED SEA LEVEL RISE AT A RATE OF 1.06 TO 1.75 MM.
- FURTHER IT IS PROJECTED TO INCREASE BY 300 MM.

TROPICAL CYCLONES:

THE FREQUENCY OF SEVERE CYCLONIC STORMS HAVE INCREASED, RISE IN AVERAGE TEMPERATURE. DECREASE IN THE MONSOON PRECIPITATION. RISE IN RAINFALL, DROUGHTS, SEA LEVEL. INCREASED INTENSITY OF CYCLONES, ETC.

A 2°C rise in global average temperature

will make India's monsoon go havwire

WHAT CAN BE DONE

Boost hydro-meteorologica

systems to conserve water

CHITED SOURCE MOEF, IPCC, World Bank

OCEAN

50% of India to get heatwaves

of more than 1.5 degrees

20% of India to get heatwaves

of more than 2 degrees
15% of India to witness heatwaves

of more than 3 degrees

Climate projections to 2100 - Temperature

- Annual Mean Temperature increases (2030 to 2100):
 - · 2.0 to 4.8 for BAU
 - 1.7 2°C (RCP2.6)
- More increase in night temperature and post monsoon
- Increase in frequency of extreme temperatures (1-in-20 year hottest day likely to become a 1-in-2 year event)
- Consecutive day warm spells beyond 90th percentile, lengthen to 150–200 days under (BAU), but only to 30–45 days under RCP2.6

Fig source; Chaturvedi et al, 2012

Climate projections to 2100 - Rainfall

Fig source; Chaturvedi et al, 2012

- Mean annual precipitation: increases 4-5% by 2030s; 6 - 14% by 2080s; except for a few regions in short term projections (2030s); increase in interannual variability
- Years with above normal monsoon rainfall expected to increase
- Extreme precipitation: increase in frequency of extreme precipitation (>40 mm/day) days for 2060s and beyond; 30-40% increase in frequency of > 100 mm/day events
- 1-in-20 year annual maximum daily precipitation *likely* to become a 1-in-5 to 1-in-15-year event by the end of the 21st century
- Frequency and intensity of droughts increase in lower latitudes
- Frequency and intensity of floods increases

Climate change impacts on water resources – streamflow in major basins

- · In majority of river basins, streamflow likely to increase
- Monsoon season streamflow increase > 40% in 8/9 basins for RCP 4.5/RCP8.5
- · Streamflow is more sensitive to changes in rainfall than temperature
- · Evapotranspiration increases up to 10% in both scenarios

Climate change impacts on water resources – drought (moderate(1,2), moderate to severe (3,4))

- · estimates based on weekly soil moisture deficit
- increase in moderate and severe drought frequencies and areal extent despite increase in rainfall (marginal improvement towards end of century)

Source: Gosain et al, 2012

Climate change impacts on water resources – extreme flows, dependable flows

- Extreme flows (99th percentile) increase by 10-50% leading to flooding in majority of the river basins; few sub-basins show some decrease in the peak flows
- dependable (10th percentile) flows also increase; in some basins in central India dependable flows decline
- Substantial efforts required to develop future water management strategies

Source: Gosain et al, 2012

Rise in sea level	By 2	2040	By 2050		
in metres	A*	B**	A*	B**	
Mumbai	0.12	0.11	0.17	0.14	
Mangaluru	0.10	0.09	0.15	0.13	
Kochi	0.15	0.15	0.22	0.19	
Chennai	0.10	0.11	0.16	0.14	
Vizag	0.10	0.10	0.14	0.13	
Global	0.14	0.13	0.20	0.18	

A* - Current scenario of global emission level in line with the collective nationally determined contributions (climate action plan) by 2030

 B^{**} - Best-case scenario to keep global emission to 'net zero' around mid-century (Median projections of global and regional sea level rise or fall, relative to a 1995-2014 baseline)

epresentat RCP	ive concentration p Forcing	Temperature	Emission Trend	
1.9	1.9 W/m2	~1.5°C	Very Strongly Declining Emissions	
2.6	2.6 W/m2	~2.0°C	Strongly Declining Emissions	
4.5	4.5 W/m2	~2.4°C	Slowly Declining Emissions	
6.0	6.0 W/m2	~2.8°C	Stabilising Emissions	
8.5	8.5 W/m2	~4.3°C	Rising Emissions	

MEASURING SEA LEVEL

Measuring sea level using tide gauges

- Measuring sea level (SL) using tide gauges provide long and reliable records of water levels that can be used to isolate sea level change trends.
- The tide gauge detect high and low points of tides in a given period of time.
- These data points are also important for detecting water levels during storms and other events as well as in the long-term investigation of relative water level change (rise or fall).
- Tide levels are also measured by floating buoys, which may also be used to detect tsunami waves.

Measuring sea level using satellite altimetry

- Satellite altimetry with multiple satellites provided much better data resolution and coverage.
- The measurements utilize multi-beam methods that are very precise and can measure changes in elevation on the earth's surface to great precision in the range of centimeters.
- These methods have shown that water bodies are not flat but are incredibly dynamic and have high and low spots due to factors such as gravitational variability.
- Data such as ocean circulation, sea level rise, and wave heights can be measured.
- these measurements have provided insight into the links between the ocean and the atmosphere and how the connections drive climate.

Seafloor

Reference ellipsoid

- Sea level rise scenarios termed as Global mean sea level (GMSL) scenarios.
- ➤ Represent future sea level changes in view of increasing GHG emissions, atmospheric warming and ocean.
- ➤ It helps to support planning and decision making in how much sea level rise could occur under what circumstance and by when.
- ➤ It also predicts how sea level rise both globally and locally.
- > Sea level rise scenarios are generally based upon climate model outputs.
- ➤ Climate models simulate different responses, like how ocean might warm, where ice melts and how additional water disperses around the world's oceans and affects circulation patterns.
- ➤ These responses differ under models that use different bounding conditions like varying GHG emissions and ocean and atmospheric warming projections for future sea level rise.
- ➤ Thus sea level rise scenarios help us plan in the face of uncertainty by providing a range of possible futures that help represent a) potential future human-driven greenhouse gas emissions, and b) how earth's physical processes will respond to increased temperatures.

Figure 9: Coastal Vulnerability map to sea level rise in 1 m, 2 m, 3 m, 4 m and 5 m

Figure 11: The relationship between sea level changes and distance from the sea in most vulnerable coastal area of West Bengal.

Figure 7: Inundation scenario of Visakhapatnam area for sea level rise A) Nov, 1977 (Landsat MSS) B) Nov, 2005 (Landsat TM) with true colour composition.

Figure 8: Inundation scenario of Paradeep area for sea level rise A) Nov, 1977 (Landsat MSS) B) Nov, 2005 (Landsat TM) with true colour composition.

Pramanik et al., 2015

Groundwater Flow modeling

$$\frac{\partial}{\partial x}\left(K_{xx}\frac{\partial h}{\partial x}\right) + \frac{\partial}{\partial y}\left(K_{yy}\frac{\partial h}{\partial y}\right) + \frac{\partial}{\partial z}\left(K_{zz}\frac{\partial h}{\partial z}\right) + W = S_s\frac{\partial h}{\partial t} \qquad \nabla \cdot \rho K_f + \left(\nabla h_f + \frac{(\rho - \rho_f)}{\rho_f}\nabla z\right) = \rho S_f\frac{\partial h_f}{\partial t} + n\frac{\partial \rho}{\partial C}\frac{\partial C}{\partial t} - \rho q$$

$$\nabla \cdot \rho K_f + \left(\nabla h_f + \frac{(\rho - \rho_f)}{\rho_f} \nabla z \right) = \rho S_f \frac{\partial h_f}{\partial t} + n \frac{\partial \rho}{\partial C} \frac{\partial C}{\partial t} - \overline{\rho q}$$

 K_{xx} , K_{yy} and K_{zz} are hydraulic conductivity along x,y, z Directions (L/T), h - is Potentiometric head (L), w - is volumetric flux per unit volume representing sources or sinks of water, Ss - is the specific storage of the porous material (L⁻¹), t - is time (T), P i s fluid density (ML⁻³). Kf fresh water hydraulic conductivity (LT⁻¹), Hf equivalent fresh water head (L). Pf is the density of fresh water (ML-3), Sf equivalent fresh water storage, coefficient (L-1), tis time (T), N is porosity (L0), C concentration of dissolved constituent

(salinity, CI) (ML-3), p fluid density of source or a sink (ML-3, q is the flow rate of the source or sink (T-1).

Epoch	Stage/formation	Lithology
Recent Pleistocene	Quaternary	Soils, Alluvium and beach sand, boulder conglomerate, Older alluvium and laterite
Pliocene	Karaikal beds	Sand and clay with fossils
Miocene	Cuddalore sandstone Niniyur Ariyalur	Mottled and friable sandstone, buff coloured, clay and gravel Arenaceous limestone and sandstone and clay
Cretaceous to	Tiruchirappalli	Sandstone, clay and shell
Upper	Uttatur	limestone Basal limestone,
Carboniferous	Satyavedu	coral clay and sandy bed
	Sriperumbudur	Ferruginous sandstone and
		conglomerate Clay, shale and
		feldspathic sandstone
	Unconformity	
Archaean		Gneissic complex, charnockite, granite and associated basic and ultra-basic intrusive

- Total coastal stretch-200 km
- Annual Normal Rainfall -1000 to 1500 mm.

172506	
150000	
120000	
notos	
oobos	
oobas	

HK 40.0 36.0 32.0 28.0 24.0 20.0 16.0 12.0 8.0 4.0

Aquifer Parameters	1st Layer		2nd Layer	3rd Layer	4th Layer	5th Layer	
	Alluvium	Marine Sediments	Silt	Sandy Alluvium	Clay	Sandy Clay	Clay
Conductivity (m/d)	35	2.6	0.51	15.206	0.112	0.19	0.112
Specific storage (Ss) m/d	0.0005	0.0005	0.0014	0.00013	0.0019	0.00128	0.0019
Specific yield (Sy) m/d	0.16	0.16	0.1	0.2	0.03	0.07	0.03
Total Porasity %	0.35	0.35	0.445	0.5	0.7	0.38	0.7
Effective Porosity %	0.175	0.175	0.2225	0.25	0.35	0.19	0.35
* In fist layer alluvium and marine sediments has been considered as same, as alluvium							

SLR (m) (Cuddalore)	SLR(m) Nagapattinam)	Global scenarios (prediction) (NASA, 2021).
0.2	0.2	2040
0.6	0.6	2080
1.0	1.0	2100

UNCERTAINTIES

- Factors like tidal, wave, altitude and other factors influencing sealevel rise were not considered.
- Seawater intrusion was not reflected
- The initial head for sea level is the present sea level
- The study aims to highlight the combined impact of sea-level rise and pumping.
- The transient and steady-state for the initial model were calibrated, but the prediction models were not calibrated due to more significant uncertainties.

WWW.THE-SHIFT.ORG

EAT SMART

buy local and organic food ■ avoid packaging waste ■ save your left-overs for the next day ■ stop or reduce eating meat and fish

TRAVEL SUSTAINABLE

cover small distances by foot or bike use public transport whenever possible carpool avoid air travel for all journeys ess than 1000km use The Shift's

USE CLEAN ENERGY

switch to a renewable energy supplier participate in a local energy cooperative install solar PV, solar thermal installation, or ground heat

BE AN EXAMPLE

Do not only change our own lifestyle but also help others reduce their ecological footprint. Together we make a difference!

